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Abstract. In his 2018 monograph on elliptic cohomology, Lurie developed

the theory of orientations of formal groups, a powerful new tool in chromatic

homotopy theory that strengthens the classical parameterization of complex-
oriented cohomology theories by formal groups and extends it to the E∞ set-

ting. The goal of this talk is to provide a conceptually accessible introduction

to orientations: what they are, why they’re useful, and how they can be inter-
preted algebraically and geometrically.

1. A recap of the classical story

We have a standard map

CP1 CP∞

S2 K(Z, 2)

i

∼= ≃

i

where [i] = 1 ∈ π2K(Z, 2), i.e. it is the canonical generator. Now let R be a ring
spectrum, so we have a unit element 1 ∈ π0(R), and take R2(i):

Map∗(S
2,Ω∞−2R) Map∗(KZ, 2),Ωinfty−2R)

Map∗(S
0,Ω∞R) MapE2

(Z,Ω∞R)

≃

i∗

≃

The left equivalence comes from suspension-loop adjunction, while the right
equivalence comes from delooping. We have Map∗(S

0,Ω∞R) ≃ MapE1
(Z,Ω∞R)

because Z is the free E1-space on S0, so we get a map

(∗) MapE1
(Z,Ω∞R)← MapE2

(Z,Ω∞R)

which coincides with the evident forgetful map, as I showed in my talk last
semester (c.f. [1]).

Definition 1.1. A complex orientation is an element c1 ∈ R2(CP∞) restricting to
1 along the natural map R2(CP∞)→ R2(S2) ∼= π0R.
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Since this restriction map is equivalent to (∗), this is a kind of “strictification”
of the unit of R. Unlike S2, CP∞ is an abelian group; in fact, it is the free “strict
abelian group” on the pointed space S2. As a consequence, its cohomology is a
formal group. The graded version of this formal group is Spf R∗(CP∞) with adic
topology coming from the isomorphism R∗(CP∞) ∼= (π∗(R))[[c1]]. By applying the

forgetful functor FGroup(π∗(R)) → FGroup(π0(R)), we get a formal group ĜQ0

R

over π0R.

Definition 1.2. The formal group ĜQ0

R is called the classical Quillen formal group.

Remark 1.3. If there is an invertible element u ∈ π2R, we can write ĜQ0

R =
Spf R0(CP∞), where the adic topology is generated by u−1c1.

One can also construct ĜQ0

R more “intrinsically” if R is weakly 2-periodic. In
this case, R0(CP∞) is a smooth one-dimensional cocommutative Hopf algebra, and

its cospectrum is ĜQ0

R .

2. Quillen According to Lurie

I’ll set up some technical definitions to lift the above into the realm of spectral
algebraic geometry. The material in this section, as well as the remainder of the
talk, originates from [2].

Definition 2.1. An adic E∞ R-algebra is an E∞ R-algebra A with an adic topology
on π0A. Such a ring is called smooth if, roughly speaking, its homotopy ring is a
completed symmetric algebra on a finite-rank projective module. (To be precise, it
should be the complete symmetric algebra on a π0R-module, tensored up to π∗R.)
Equivalently, A is smooth if its dual is a smooth coalgebra, meaning π0(A

∨) ∼=
Γ∗(M).

By the functor-of-points construction, we have a fully faithful embedding

cCAlgsmR Fun(CAlgcnR ,Spaces)

CAlgad,smR

cSpec

≃ Spf

.

An object in the image of this embedding is called a formal hyperplane. Basically,
these are smooth affine objects in the category of formal spectral Deligne-Mumford
stacks.

Definition 2.2. A formal group over R is an abelian group object in the category
of formal hyperplanes, i.e. a product-preserving functor Latop → Hyp(R).

(Here, Lat is the category of finitely-generated free abelian groups.) What I’ve
called an abelian group object here is sometimes called a “strict abelian group”,
and is a model for the Lawvere theory of abelian groups. Be warned, however, that
this is not the same as a grouplike E∞ object (hence some people’s usage of the
word “strict” to distinguish it).

Theorem 2.3. If A is a complex-periodic E∞-ring, the “categorified homology”
coalgebra C∗(K(M∨, 2);A) is smooth for any M ∈ Lat. Thus M 7→ cSpecC∗(K(M∨, 2);A)
is a product-preserving functor Latop → Hyp(A), i.e. a formal group.
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Definition 2.4. This is called the Quillen formal group of A, ĜQ
A.

This name is justified by the following proposition.

Proposition 2.5. The associated classical formal group is ĜQ0

A .

Proof. BecauseA is complex-periodic, we have ĜQ0

A = Spf A0(CP∞) = cSpecA0(CP∞).
Since the group structure comes from CP∞, its associated abelian functor of points
Latop → Hyp(π0A) is Zn 7→ cSpecA0((CP∞)n) ∼= cSpecA0(K((Zn)∨, 2)) = π0C∗(K((Zn)∨, 2);A).
The multiplication on CP∞ comes from Z, so the abelian structure is compatible
with this isomorphism. □

3. Dualizing Lines

Okay, so we’ve lifted the theory of formal groups to spectral algebraic geometry.
But what do we actually get from this generalization?

Answer: A theory of orientations! But to describe it, we’ll first need the ability
to linearize our formal groups.

Normally, we would do this using the cotangent space. This works fine for
discrete formal groups, but the “obvious” spectral analogue, the cotangent fiber
η∗LX/R (constructed from the cotangent complex LX/R by pulling back alone the
basepoint η), has some issues:

i) Suppose R is a classical commutative ring. Then π0(η
∗LX/R) ∼= T ∗

X,η, but
η∗LX/R has nonzero πn for some n > 0 unless R is rational.

ii) Unless our E∞-ring R is rational, the module η∗LX/R need not be projective.

To solve these problems, we choose a different generalization: the dualizing line.
Let X be a one-dimensional formal hyperplane with basepoint η. The idea is to
define an invertible sheaf which is the relative dualizing complex of the canonical
projection X → SpecR in the sense of Grothendieck-Serre duality, then take the
fiber over η. Because this duality theory is hard, however, we (and Lurie) give a
simpler definition, reminiscent of the I/I2 definition in commutative algebra.

Definition 3.1. Let ε : OX → R classify the basepoint η ∈ X(τ≥0R), and write
OX(−η) = fib(ε). The dualizing line of (X, η) is the module ωX,η = R⊗OX

OX(−η).

Theorem 3.2 (Properties of ω).

i) ωX,η is a locally free R-module of rank 1.
ii) For any M ∈ ModR, we have a natural equivalence MapModR

(ωX,η,M) ≃
fib

(
MapAlgR

(OX , R⊕M)→ MapAlgR
(OX , R)

)
, where the fiber is taken over

ε.
iii) We have a natural fiber sequence of R-modules

Σ(ωX,η)→ R⊗OX
R

m−→ R,

where m is multiplication on R viewed as an OX-algebra via ε.

Remark 3.3. The cotangent fiber satisfies a property similar to (ii), where AlgR
is replaced by by CAlgR. So ω is kind of like a noncommutative version of η∗L,
measuring square-zero extensions of E1-rings deforming η rather than E∞-rings.
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Now, let A ∈ CAlgR. Then, after replacing A and R with their connective covers,
we get a map

ΩX(A) ≃ MapCAlgR
(R⊗OX

R,A)

→ MapR(R⊗OX
R,A)

→ MapR(Σ(ωX,η), A) ≃ ΩMapR(ωX,η, A).

The composite L : ΩX(τ≥0A) → ΩMapR(ωX,η, A) is called the linearization
map. Note that it turns maps into our hyperplane into maps out of a version of the
cotangent space, as we would expect a linearization procedure to do. (It wouldn’t be
too far off to call this a contravariant derivative for loops in the space of functions,
if you want to sound fancy. In fact, it can completely classify ramification of
morphisms; but that’s a story for another day.)

Consider now the Quillen formal group of a complex-periodic E∞-ring A. We
have a fiber sequence

Σ(ωĜQ
A
) A⊗C∗(CP∞;A) A A

C∗(S1, A),

m

≃ ev1

so Σ(ωĜQ
A
) ≃ C∗

red(S
1, A) ≃ Σ−1A, and finally

ωĜQ
A
≃ Σ−2A.

Since ω is the linearization of ĜQ
A, this tells us that, intuitively, the Quillen

formal group consists of power series in π2A. This result will allow us to relate
orientations to the Quillen formal group and view them as a generalization of Bott
periodicity.

4. Orientations

Definition 4.1. A preorientation of a pointed formal hyperplane X is a pointed
map e : S2 → X(τ≥0R). We write Pre(X) = Ω2X(τ≥0R) for the space of preorien-
tations.

Recall that we have L : ΩX(τ≥0R) → ΩMapR(ωX,ηR). Looping this gives a
map Pre(X)→ MapR(ωX,η,Σ

−2R). For e ∈ Pre(X), we call its image βe : ωX,η →
Σ−2R the Bott map associated to e.

Definition 4.2. A preorientation is called an orientation if βe is an equivalence.

The isomorphism described at the end of the last section can be described as the
Bott map associated to a certain preorientation. Remember, the Quillen formal
group has underlying formal hyperplane C∗(K(Z, 2);A), so a preorientation of it
is just an element of A2(CP∞). Tracing through the linearization map, we find
that the chosen complex orientation c1 will go to the desired isomorphism. So
orientations of the Quillen formal group correspond to complex orientations! In
fact, this goes further: it is the universal example of a pre-oriented formal group.

Theorem 4.3. Let R be a complex-periodic E∞-ring, and let Ĝ be a formal group

over R. Then we have an equivalence Pre(Ĝ) ≃ MapFGroup(Ĝ
Q
R, Ĝ).
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Proof. The computation is similar to the one described above. Note that we have

Pre(Ĝ) = Map∗(S
2,Ω∞Ĝ(τ≥0R)) ≃ MapZ(CP

∞, Ĝ(τ≥0R)), because CP∞ is the
free Z-module on S2. Writing C for the abelian group coalgebra with cSpec (C) =

Ĝ, we get

Pre(Ĝ) ≃ MapZ(CP
∞,MapcCAlgR

(R,C))

≃ MapAb(cCAlgR)(C∗(CP∞;R), C)

≃ MapFGroup(R)(cSpec (C∗(CP∞;R)), cSpec (C))

≃ MapFGroup(R)(Ĝ
Q
R, Ĝ).

□

We can imitate the linearization computation above to show that not only is ĜQ
R

the initial preoriented formal group, it is also the unique oriented formal group.

Theorem 4.4. A preorientation is an orientation if and only if

i) R is complex-periodic, and

ii) The induced map ĜQ
R → Ĝ is an equivalence.

Example. Consider the special case R = KU , Ĝ = Ĝm. A computation I’ll skip

here shows that over S, and thus over any ring R, the dualizing line of Ĝm can

be canonically identified with R. If we take e : S2 ∼= CP1 → Ω∞Ĝm(KU) to
be the preorientation corresponding to the tautological bundle O(1) on CP1, βe

is the standard Bott isomorphism KU
∼−→ Σ−2KU . In this sense, the complex

orientation of KU is the same information as Bott periodicity. (Likewise, it allows
us to interpret complex orientations of other ring spectra as a kind of generalized
Bott periodicity.) Combining this with classical Bott periodicity and the theory
of oriented deformation rings provides an elegant new proof of Snaith’s theorem in
the E∞ setting.
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